Various LaTeX Mathematical Expressions

This document includes a variety of LaTeX mathematical expressions for use in technical documentation, including basic notation, set theory, calculus, linear algebra, equations, systems, and advanced topics in mathematics and physics.

Advanced Mathematical Expressions with LaTeX

WIP

This article is still a work in progress.

This document demonstrates the power of LaTeX for representing mathematical expressions in technical documentation, from basic notation to complex equations and proofs.

Basic Mathematical Notation

Arithmetic Operations

a+bc×d÷e=fa + b - c \times d \div e = f

7×8=567 \times 8 = 56

205=4\frac{20}{5} = 4

Exponents and Subscripts

x2+y2=z2x^2 + y^2 = z^2

a1+a2+a3++an=i=1naia_1 + a_2 + a_3 + \ldots + a_n = \sum_{i=1}^{n} a_i

Chemical formulas: H2OH_2O, CO2CO_2

Greek Letters

Lowercase: α,β,γ,δ,ϵ,ζ,η,θ,ι,κ,λ,μ,ν,ξ,π,ρ,σ,τ,υ,ϕ,χ,ψ,ω\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta, \theta, \iota, \kappa, \lambda, \mu, \nu, \xi, \pi, \rho, \sigma, \tau, \upsilon, \phi, \chi, \psi, \omega

Uppercase: Γ,Δ,Θ,Λ,Ξ,Π,Σ,Υ,Φ,Ψ,Ω\Gamma, \Delta, \Theta, \Lambda, \Xi, \Pi, \Sigma, \Upsilon, \Phi, \Psi, \Omega

Variants: ε,ϑ,ϰ,ϖ,ϱ,ς,φ\varepsilon, \vartheta, \varkappa, \varpi, \varrho, \varsigma, \varphi

Set Theory and Logic

Set Notation

ABA \cup B - Union of sets A and B

ABA \cap B - Intersection of sets A and B

ABA \setminus B - Set difference (elements in A but not in B)

ABA \subset B - A is a subset of B

ABA \subseteq B - A is a subset of or equal to B

xAx \in A - x is an element of set A

\emptyset - Empty set

N,Z,Q,R,C\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C} - Number sets (natural, integer, rational, real, complex)

Logic Operators

PQP \land Q - Logical AND

PQP \lor Q - Logical OR

¬P\lnot P - Logical NOT

P    QP \implies Q - Implication (if P then Q)

P    QP \iff Q - Logical equivalence (P if and only if Q)

x\forall x - Universal quantifier (for all x)

x\exists x - Existential quantifier (there exists x)

Calculus

Limits

limxaf(x)=L\lim_{x \to a} f(x) = L

limx1x=0\lim_{x \to \infty} \frac{1}{x} = 0

limx0sinxx=1\lim_{x \to 0} \frac{\sin x}{x} = 1

Derivatives

ddxf(x)=f(x)\frac{d}{dx}f(x) = f'(x)

d2ydx2=f(x)\frac{d^2y}{dx^2} = f''(x)

fx\frac{\partial f}{\partial x} - Partial derivative

f\nabla f - Gradient of f

Integrals

Indefinite integral: f(x)dx=F(x)+C\int f(x) \, dx = F(x) + C

Definite integral: abf(x)dx=F(b)F(a)\int_{a}^{b} f(x) \, dx = F(b) - F(a)

Double integral: Df(x,y)dxdy\iint_D f(x,y) \, dx \, dy

Line integral: Cf(x,y)ds\oint_C f(x,y) \, ds

Linear Algebra

Vectors and Matrices

Column vector: v=(v1v2vn)\vec{v} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}

Row vector: v=(v1v2vn)\vec{v} = \begin{pmatrix} v_1 & v_2 & \cdots & v_n \end{pmatrix}

Matrix: A=(a11a12a1na21a22a2nam1am2amn)A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}

Identity matrix: I3=(100010001)I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}

Matrix Operations

Matrix multiplication: C=AB=(k=1na1kbk1k=1na1kbk2k=1na1kbkpk=1na2kbk1k=1na2kbk2k=1na2kbkpk=1namkbk1k=1namkbk2k=1namkbkp)C = AB = \begin{pmatrix} \sum_{k=1}^{n} a_{1k}b_{k1} & \sum_{k=1}^{n} a_{1k}b_{k2} & \cdots & \sum_{k=1}^{n} a_{1k}b_{kp} \\ \sum_{k=1}^{n} a_{2k}b_{k1} & \sum_{k=1}^{n} a_{2k}b_{k2} & \cdots & \sum_{k=1}^{n} a_{2k}b_{kp} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{k=1}^{n} a_{mk}b_{k1} & \sum_{k=1}^{n} a_{mk}b_{k2} & \cdots & \sum_{k=1}^{n} a_{mk}b_{kp} \end{pmatrix}

Determinant: det(A)\det(A) or A|A|

Transpose: ATA^T

Inverse: A1A^{-1}

Trace: tr(A)=i=1naii\text{tr}(A) = \sum_{i=1}^{n} a_{ii}

Equations and Systems

Quadratic Formula

x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} for ax2+bx+c=0ax^2 + bx + c = 0

Systems of Linear Equations

{a11x1+a12x2++a1nxn=b1a21x1+a22x2++a2nxn=b2am1x1+am2x2++amnxn=bm\begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m \end{cases}

In matrix form: Ax=bA\vec{x} = \vec{b}

Advanced Calculus

Taylor Series

f(x)=f(a)+f(a)1!(xa)+f(a)2!(xa)2+f(a)3!(xa)3+f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \cdots

f(x)=n=0f(n)(a)n!(xa)nf(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n

Fourier Series

f(x)=a02+n=1[ancos(nπxL)+bnsin(nπxL)]f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[ a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right]

Where: an=1LLLf(x)cos(nπxL)dxa_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) \, dx

bn=1LLLf(x)sin(nπxL)dxb_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) \, dx

Differential Equations

Ordinary Differential Equations

First-order linear ODE: dydx+P(x)y=Q(x)\frac{dy}{dx} + P(x)y = Q(x)

Second-order linear ODE: d2ydx2+p(x)dydx+q(x)y=g(x)\frac{d^2y}{dx^2} + p(x)\frac{dy}{dx} + q(x)y = g(x)

Partial Differential Equations

Wave equation: 2ut2=c22ux2\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}

Heat equation: ut=α2u\frac{\partial u}{\partial t} = \alpha \nabla^2 u

Laplace equation: 2ϕ=0\nabla^2 \phi = 0 or 2ϕx2+2ϕy2+2ϕz2=0\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = 0

Probability and Statistics

Probability

Probability of event A: P(A)P(A)

Conditional probability: P(AB)=P(AB)P(B)P(A|B) = \frac{P(A \cap B)}{P(B)}

Bayes’ theorem: P(AB)=P(BA)P(A)P(B)P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}

Distributions

Binomial distribution: P(X=k)=(nk)pk(1p)nkP(X = k) = \binom{n}{k}p^k(1-p)^{n-k}

Normal distribution probability density function: f(x)=1σ2πe12(xμσ)2f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}

Poisson distribution: P(X=k)=λkeλk!P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}

Statistical Measures

Expected value: E[X]=ixipiE[X] = \sum_{i} x_i p_i or E[X]=xf(x)dxE[X] = \int_{-\infty}^{\infty} x f(x) \, dx

Variance: Var(X)=E[(Xμ)2]=E[X2]E[X]2\text{Var}(X) = E[(X - \mu)^2] = E[X^2] - E[X]^2

Covariance: Cov(X,Y)=E[(XE[X])(YE[Y])]\text{Cov}(X, Y) = E[(X - E[X])(Y - E[Y])]

Correlation coefficient: ρX,Y=Cov(X,Y)σXσY\rho_{X,Y} = \frac{\text{Cov}(X, Y)}{\sigma_X \sigma_Y}

Number Theory

Divisibility and Congruences

aba \mid b means a divides b

ab(modm)a \equiv b \pmod{m} means a is congruent to b modulo m

Euler’s totient function: ϕ(n)=npn(11p)\phi(n) = n \prod_{p \mid n} \left(1 - \frac{1}{p}\right)

Prime Numbers

Prime factorization: n=p1a1×p2a2××pkakn = p_1^{a_1} \times p_2^{a_2} \times \cdots \times p_k^{a_k}

The prime number theorem: π(n)nlnn\pi(n) \sim \frac{n}{\ln n}

Complex Analysis

Complex Numbers

z=a+biz = a + bi where i2=1i^2 = -1

z=a2+b2|z| = \sqrt{a^2 + b^2} - Modulus of z

arg(z)=arctanba\arg(z) = \text{arctan}\frac{b}{a} - Argument of z

Complex Functions

Cauchy-Riemann equations: ux=vy\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} and uy=vx\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}

Cauchy’s integral formula: f(z0)=12πiCf(z)zz0dzf(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} \, dz

Residue theorem: Cf(z)dz=2πik=1nRes(f,zk)\oint_C f(z) \, dz = 2\pi i \sum_{k=1}^{n} \text{Res}(f, z_k)

Physics Equations

Mechanics

Newton’s second law: F=ma\vec{F} = m\vec{a}

Kinetic energy: K=12mv2K = \frac{1}{2}mv^2

Potential energy (gravitational): U=mghU = mgh

Electromagnetism

Maxwell’s Equations:

E=ρϵ0\nabla \cdot \vec{E} = \frac{\rho}{\epsilon_0} (Gauss’s law)

B=0\nabla \cdot \vec{B} = 0 (Gauss’s law for magnetism)

×E=Bt\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} (Faraday’s law)

×B=μ0(J+ϵ0Et)\nabla \times \vec{B} = \mu_0\left(\vec{J} + \epsilon_0 \frac{\partial \vec{E}}{\partial t}\right) (Ampère’s law with Maxwell’s addition)

Thermodynamics

First law: ΔU=QW\Delta U = Q - W

Entropy change: ΔS=dQT\Delta S = \int \frac{dQ}{T}

Quantum Mechanics

Schrödinger equation: itΨ(r,t)=H^Ψ(r,t)i\hbar \frac{\partial}{\partial t}\Psi(\vec{r},t) = \hat{H}\Psi(\vec{r},t)

Heisenberg uncertainty principle: ΔxΔp2\Delta x \Delta p \geq \frac{\hbar}{2}

Mathematical Proofs and Theorems

Proof by Induction

Base case: P(1) is true.

Inductive step: Assume P(k) is true, show P(k+1) is true.

Therefore, P(n) is true for all positive integers n.

Mathematical Theorems

The Fundamental Theorem of Calculus:

abf(x)dx=F(b)F(a)\int_{a}^{b} f(x) \, dx = F(b) - F(a)

Where F is an antiderivative of f.

Pythagorean Theorem:

For a right triangle with sides a, b and hypotenuse c:

a2+b2=c2a^2 + b^2 = c^2

Commutative Diagrams

AfBghCjD\begin{CD} A @>f>> B\\ @VgVV @VVhV\\ C @>>j> D \end{CD}

This diagram commutes if hf=jgh \circ f = j \circ g

Advanced Mathematical Structures

Groups, Rings, and Fields

Group axioms for (G,)(G, \cdot):

  1. Closure: a,bG,abG\forall a,b \in G, a \cdot b \in G
  2. Associativity: a,b,cG,(ab)c=a(bc)\forall a,b,c \in G, (a \cdot b) \cdot c = a \cdot (b \cdot c)
  3. Identity: eG,aG,ea=ae=a\exists e \in G, \forall a \in G, e \cdot a = a \cdot e = a
  4. Inverse: aG,a1G,aa1=a1a=e\forall a \in G, \exists a^{-1} \in G, a \cdot a^{-1} = a^{-1} \cdot a = e

Transformations and Mappings

Linear transformation: T(αv+βw)=αT(v)+βT(w)T(\alpha \vec{v} + \beta \vec{w}) = \alpha T(\vec{v}) + \beta T(\vec{w})

Eigenvalue equation: T(v)=λvT(\vec{v}) = \lambda \vec{v} where λ\lambda is the eigenvalue

Notable Equations in Science

Einstein’s Mass-Energy Equivalence

E=mc2E = mc^2

Euler’s Identity

eiπ+1=0e^{i\pi} + 1 = 0

Boltzmann’s Entropy Formula

S=kBlnWS = k_B \ln W

The Standard Model Lagrangian (Simplified)

LSM=Lgauge+Lfermion+LHiggs+LYukawa\mathcal{L}_{SM} = \mathcal{L}_{gauge} + \mathcal{L}_{fermion} + \mathcal{L}_{Higgs} + \mathcal{L}_{Yukawa}

Combinatorial Mathematics

Permutations and Combinations

Number of permutations: P(n,r)=n!(nr)!P(n,r) = \frac{n!}{(n-r)!}

Number of combinations: C(n,r)=(nr)=n!r!(nr)!C(n,r) = \binom{n}{r} = \frac{n!}{r!(n-r)!}

Binomial Theorem

(a+b)n=k=0n(nk)ankbk(a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k

Optimization Problems

Lagrange Multipliers

To maximize/minimize f(x,y) subject to g(x,y) = c:

f(x,y)=λg(x,y)\nabla f(x,y) = \lambda \nabla g(x,y)

Multi-Dimensional Calculus

Multiple Integrals

Triple integral in rectangular coordinates: Ef(x,y,z)dxdydz\iiint_E f(x,y,z) \, dx \, dy \, dz

Triple integral in spherical coordinates: Ef(ρ,θ,ϕ)ρ2sinϕdρdθdϕ\iiint_E f(\rho,\theta,\phi) \, \rho^2\sin\phi \, d\rho \, d\theta \, d\phi

Stokes’ Theorem

CFdr=S(×F)dS\oint_C \vec{F} \cdot d\vec{r} = \iint_S (\nabla \times \vec{F}) \cdot d\vec{S}

Divergence Theorem

V(F)dV=SFdS\iiint_V (\nabla \cdot \vec{F}) \, dV = \oiint_S \vec{F} \cdot d\vec{S}

Advanced Theoretical Mathematics

The Riemann Hypothesis

One of the most famous unsolved problems in mathematics, the Riemann Hypothesis states that all non-trivial zeros of the Riemann zeta function have real part 12\frac{1}{2}.

The Riemann zeta function is defined as:

ζ(s)=n=11nsfor (s)>1\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \quad \text{for } \Re(s) > 1

And it can be analytically continued to the entire complex plane except for a simple pole at s=1s=1:

ζ(s)=2sπs1sin(πs2)Γ(1s)ζ(1s)\zeta(s) = 2^s \pi^{s-1} \sin\left(\frac{\pi s}{2}\right) \Gamma(1-s) \zeta(1-s)

The Riemann Hypothesis conjectures that:

ζ(σ+it)=0σ=12\zeta(\sigma + it) = 0 \Rightarrow \sigma = \frac{1}{2}

The zeros of the zeta function are closely related to the distribution of prime numbers through the explicit formula:

ψ(x)=xρxρρlog(2π)12log(11x2)\psi(x) = x - \sum_{\rho} \frac{x^{\rho}}{\rho} - \log(2\pi) - \frac{1}{2}\log\left(1-\frac{1}{x^2}\right)

Where ρ\rho runs through the non-trivial zeros of the zeta function.

Mandelbrot Set and Complex Dynamics

The Mandelbrot set MM is defined as the set of complex numbers cc for which the sequence defined by the recurrence relation:

zn+1=zn2+cwith z0=0z_{n+1} = z_n^2 + c \quad \text{with } z_0 = 0

remains bounded. Mathematically:

M={cC:limnzn↛}M = \{c \in \mathbb{C} : \lim_{n \to \infty} |z_n| \not\to \infty \}

The boundary of the Mandelbrot set exhibits infinite complexity with self-similar structures at all scales. The “bulb” regions correspond to different periods in the orbit dynamics:

Period-p bulb: zp+cp=z has an attracting fixed point\text{Period-}p \text{ bulb: } z^p + c_p = z \text{ has an attracting fixed point}

The Mandelbrot set can also be characterized using the potential function:

G(c)=limn12nlogznG(c) = \lim_{n \to \infty} \frac{1}{2^n} \log|z_n|

where G(c)=0G(c) = 0 if cMc \in M and G(c)>0G(c) > 0 otherwise.

Euler’s Remarkable Identities

The Most Beautiful Equation in Mathematics

Euler’s identity elegantly connects five fundamental mathematical constants:

eiπ+1=0e^{i\pi} + 1 = 0

This can be derived from the more general Euler’s formula:

eix=cosx+isinxe^{ix} = \cos x + i \sin x

Setting x=πx = \pi yields:

eiπ=cosπ+isinπ=1+0i=1e^{i\pi} = \cos \pi + i \sin \pi = -1 + 0i = -1

Extended Euler’s Formula Applications

For any complex number z=x+iyz = x + iy:

ez=ex+iy=exeiy=ex(cosy+isiny)e^z = e^{x+iy} = e^x \cdot e^{iy} = e^x(\cos y + i\sin y)

This leads to the hyperbolic functions:

coshz=ez+ez2sinhz=ezez2\cosh z = \frac{e^z + e^{-z}}{2} \quad \sinh z = \frac{e^z - e^{-z}}{2}

And the remarkable identity:

cosz=cosh(iz)sinz=isinh(iz)\cos z = \cosh(iz) \quad \sin z = -i\sinh(iz)

Euler’s Infinite Series

ez=n=0znn!=1+z+z22!+z33!+e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!} = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \cdots

sinz=n=0(1)nz2n+1(2n+1)!=zz33!+z55!\sin z = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)!} = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \cdots

cosz=n=0(1)nz2n(2n)!=1z22!+z44!\cos z = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n)!} = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \cdots

Advanced Trigonometry

Trigonometric Identities

The double angle formulas:

sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta

cos2θ=cos2θsin2θ=2cos2θ1=12sin2θ\cos 2\theta = \cos^2 \theta - \sin^2 \theta = 2\cos^2 \theta - 1 = 1 - 2\sin^2 \theta

tan2θ=2tanθ1tan2θ\tan 2\theta = \frac{2\tan \theta}{1 - \tan^2 \theta}

The sum and difference formulas:

sin(α±β)=sinαcosβ±cosαsinβ\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta

cos(α±β)=cosαcosβsinαsinβ\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta

tan(α±β)=tanα±tanβ1tanαtanβ\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}

Hyperbolic Trigonometry

The hyperbolic functions and their relationship to the exponential function:

sinhx=exex2coshx=ex+ex2tanhx=sinhxcoshx=exexex+ex\sinh x = \frac{e^x - e^{-x}}{2} \quad \cosh x = \frac{e^x + e^{-x}}{2} \quad \tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}

Fundamental hyperbolic identity:

cosh2xsinh2x=1\cosh^2 x - \sinh^2 x = 1

Complex Trigonometry

Extended complex trigonometric identities:

sin(x+iy)=sinxcoshy+icosxsinhy\sin(x+iy) = \sin x \cosh y + i\cos x \sinh y

cos(x+iy)=cosxcoshyisinxsinhy\cos(x+iy) = \cos x \cosh y - i\sin x \sinh y

tan(x+iy)=sin(x+iy)cos(x+iy)=sinxcoshy+icosxsinhycosxcoshyisinxsinhy\tan(x+iy) = \frac{\sin(x+iy)}{\cos(x+iy)} = \frac{\sin x \cosh y + i\cos x \sinh y}{\cos x \cosh y - i\sin x \sinh y}

Mathematical Visualizations (TikZ-Style)

Vector Field Representation

The visualization of a vector field F(x,y)=(y,x)\vec{F}(x,y) = (y, -x) representing rotational motion:

F(x,y)=(yx)\vec{F}(x,y) = \begin{pmatrix} y \\ -x \end{pmatrix}

This field has curl:

×F=FyxFxy=11=2\nabla \times \vec{F} = \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} = -1 - 1 = -2

And divergence:

F=Fxx+Fyy=0+0=0\nabla \cdot \vec{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} = 0 + 0 = 0

Parametric Surface Plotting

A torus with major radius RR and minor radius rr can be parametrized as:

r(u,v)=((R+rcosv)cosu(R+rcosv)sinursinv)\vec{r}(u,v) = \begin{pmatrix} (R + r\cos v)\cos u \\ (R + r\cos v)\sin u \\ r\sin v \end{pmatrix}

where u,v[0,2π]u, v \in [0, 2\pi].

The surface area of this torus is:

A=Dru×rvdudv=D(R+rcosv)rdudv=4π2RrA = \iint_D \left| \frac{\partial \vec{r}}{\partial u} \times \frac{\partial \vec{r}}{\partial v} \right| \,du\,dv = \iint_D (R + r\cos v) \cdot r \,du\,dv = 4\pi^2 Rr

Complex Function Visualization

For a complex function f(z)=z2f(z) = z^2, the conformal mapping of a grid in the complex plane:

If z=x+iyz = x + iy, then f(z)=(x2y2)+i(2xy)f(z) = (x^2-y^2) + i(2xy)

The Jacobian of this transformation is:

J=uxuyvxvy=2x2y2y2x=4x2+4y2=4z2J = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix} = \begin{vmatrix} 2x & -2y \\ 2y & 2x \end{vmatrix} = 4x^2 + 4y^2 = 4|z|^2

Quantum Mechanics and Advanced Physics

Schrödinger’s Wave Equation (Time-Dependent)

itΨ(r,t)=[22m2+V(r,t)]Ψ(r,t)i\hbar \frac{\partial}{\partial t} \Psi(\vec{r},t) = \left[ -\frac{\hbar^2}{2m}\nabla^2 + V(\vec{r},t) \right] \Psi(\vec{r},t)

For a particle in a 1D infinite potential well of width LL, the energy eigenfunctions are:

ψn(x)=2Lsin(nπxL)\psi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right)

with energy eigenvalues:

En=n2π222mL2E_n = \frac{n^2\pi^2\hbar^2}{2mL^2}

Dirac Equation

The Dirac equation for a relativistic electron:

itψ=(cαp+βmc2)ψi\hbar \frac{\partial}{\partial t}\psi = \left(c\vec{\alpha} \cdot \vec{p} + \beta mc^2\right) \psi

Where α\vec{\alpha} and β\beta are the Dirac matrices:

αi=(0σiσi0),β=(I00I)\alpha_i = \begin{pmatrix} 0 & \sigma_i \\ \sigma_i & 0 \end{pmatrix}, \quad \beta = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix}

And σi\sigma_i are the Pauli matrices:

σ1=(0110),σ2=(0ii0),σ3=(1001)\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}

Path Integrals in Quantum Field Theory

Feynman path integral formulation of quantum mechanics:

xb,tbxa,ta=x(ta)=xax(tb)=xbD[x(t)]eiS[x(t)]\langle x_b, t_b | x_a, t_a \rangle = \int_{x(t_a)=x_a}^{x(t_b)=x_b} \mathcal{D}[x(t)] \, e^{\frac{i}{\hbar}S[x(t)]}

Where S[x(t)]S[x(t)] is the action:

S[x(t)]=tatbL(x(t),x˙(t),t)dtS[x(t)] = \int_{t_a}^{t_b} L(x(t), \dot{x}(t), t) \, dt

For a non-relativistic free particle:

S[x(t)]=tatb12mx˙2(t)dtS[x(t)] = \int_{t_a}^{t_b} \frac{1}{2}m\dot{x}^2(t) \, dt

Einstein Field Equations

Rμν12Rgμν+Λgμν=8πGc4TμνR_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4}T_{\mu\nu}

The Schwarzschild solution for a non-rotating spherical mass:

ds2=(12GMc2r)c2dt2+(12GMc2r)1dr2+r2(dθ2+sin2θdϕ2)ds^2 = -\left(1-\frac{2GM}{c^2r}\right)c^2dt^2 + \left(1-\frac{2GM}{c^2r}\right)^{-1}dr^2 + r^2(d\theta^2 + \sin^2\theta \, d\phi^2)

Fractals and Iterative Systems

Julia Sets

For a complex function fc(z)=z2+cf_c(z) = z^2 + c, the Julia set JcJ_c is the boundary of the set of points that escape to infinity under iteration:

Jc={zC:limnfcn(z)=}J_c = \partial\{z \in \mathbb{C} : \lim_{n\to\infty} |f_c^n(z)| = \infty\}

The dynamics near fixed points z0z_0 where fc(z0)=z0f_c(z_0) = z_0 are determined by the multiplier:

λ=fc(z0)\lambda = f'_c(z_0)

  • If λ<1|\lambda| < 1, the fixed point is attracting
  • If λ>1|\lambda| > 1, the fixed point is repelling
  • If λ=1|\lambda| = 1, the fixed point is indifferent

Iterated Function Systems (IFS)

For a set of contractive mappings {f1,f2,,fn}\{f_1, f_2, \ldots, f_n\} in a metric space, the attractor AA satisfies:

A=i=1nfi(A)A = \bigcup_{i=1}^n f_i(A)

The Hausdorff dimension dd of a self-similar fractal created by nn copies scaled by factor rr satisfies:

nrd=1n \cdot r^d = 1

For example, the Sierpinski triangle has n=3n=3 and r=12r=\frac{1}{2}, so:

3(12)d=1    d=log3log21.5853 \cdot \left(\frac{1}{2}\right)^d = 1 \implies d = \frac{\log 3}{\log 2} \approx 1.585

The Logistic Map and Chaos

The logistic map is defined by the recurrence relation:

xn+1=rxn(1xn)x_{n+1} = rx_n(1-x_n)

The orbit diagram shows period doubling bifurcations leading to chaos. The Feigenbaum constant:

δ=limnrnrn1rn+1rn4.669201609102990671853203821578\delta = \lim_{n\to\infty} \frac{r_n - r_{n-1}}{r_{n+1} - r_n} \approx 4.669201609102990671853203821578

Where rnr_n is the parameter value at which the period-2n2^n orbit appears.

Non-Euclidean Geometry

Hyperbolic Geometry

In the Poincaré disk model, the hyperbolic distance between points z1z_1 and z2z_2 is:

dH(z1,z2)=2tanh1z1z21z1ˉz2d_H(z_1, z_2) = 2\tanh^{-1}\left|\frac{z_1-z_2}{1-\bar{z_1}z_2}\right|

The area of a hyperbolic triangle with angles α,β,γ\alpha, \beta, \gamma is:

A=π(α+β+γ)A = \pi - (\alpha + \beta + \gamma)

Riemannian Geometry

The Riemann curvature tensor measures how the geometry deviates from Euclidean space:

Rσμνρ=μΓνσρνΓμσρ+ΓμλρΓνσλΓνλρΓμσλR^{\rho}_{\sigma\mu\nu} = \partial_{\mu}\Gamma^{\rho}_{\nu\sigma} - \partial_{\nu}\Gamma^{\rho}_{\mu\sigma} + \Gamma^{\rho}_{\mu\lambda}\Gamma^{\lambda}_{\nu\sigma} - \Gamma^{\rho}_{\nu\lambda}\Gamma^{\lambda}_{\mu\sigma}

Where Γμνρ\Gamma^{\rho}_{\mu\nu} are the Christoffel symbols:

Γμνρ=12gρσ(μgνσ+νgμσσgμν)\Gamma^{\rho}_{\mu\nu} = \frac{1}{2}g^{\rho\sigma}\left(\partial_{\mu}g_{\nu\sigma} + \partial_{\nu}g_{\mu\sigma} - \partial_{\sigma}g_{\mu\nu}\right)

Category Theory

Functors and Natural Transformations

For categories C\mathcal{C} and D\mathcal{D}, a functor F:CDF: \mathcal{C} \rightarrow \mathcal{D} maps:

  • Objects XX in C\mathcal{C} to objects F(X)F(X) in D\mathcal{D}
  • Morphisms f:XYf: X \rightarrow Y in C\mathcal{C} to morphisms F(f):F(X)F(Y)F(f): F(X) \rightarrow F(Y) in D\mathcal{D}

Preserving composition: F(gf)=F(g)F(f)F(g \circ f) = F(g) \circ F(f)

A natural transformation η:FG\eta: F \Rightarrow G between functors F,G:CDF, G: \mathcal{C} \rightarrow \mathcal{D} consists of a family of morphisms ηX:F(X)G(X)\eta_X: F(X) \rightarrow G(X) such that for any f:XYf: X \rightarrow Y in C\mathcal{C}:

ηYF(f)=G(f)ηX\eta_Y \circ F(f) = G(f) \circ \eta_X

This is captured by the commutative diagram:

F(X)F(f)F(Y)ηXηYG(X)G(f)G(Y)\begin{CD} F(X) @>F(f)>> F(Y) \\ @V\eta_X VV @VV\eta_Y V \\ G(X) @>>G(f)> G(Y) \end{CD}

Yoneda Lemma

For a locally small category C\mathcal{C} and an object AA in C\mathcal{C}, the Yoneda embedding:

yA=HomC(A,):CSety_A = \text{Hom}_{\mathcal{C}}(A, -): \mathcal{C} \rightarrow \text{Set}

The Yoneda lemma states that for any functor F:CSetF: \mathcal{C} \rightarrow \text{Set}:

Nat(yA,F)F(A)\text{Nat}(y_A, F) \cong F(A)


This showcase represents only a subset of LaTeX’s mathematical capabilities. For specific needs, you may need to consult additional resources or specialized LaTeX packages.